Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
2.
iScience ; 27(2): 108879, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327771

RESUMEN

One of the major barriers that have restricted successful use of chimeric antigen receptor (CAR) T cells in the treatment of solid tumors is an unfavorable tumor microenvironment (TME). We engineered CAR-T cells targeting carbonic anhydrase IX (CAIX) to secrete anti-PD-L1 monoclonal antibody (mAb), termed immune-restoring (IR) CAR G36-PDL1. We tested CAR-T cells in a humanized clear cell renal cell carcinoma (ccRCC) orthotopic mouse model with reconstituted human leukocyte antigen (HLA) partially matched human leukocytes derived from fetal CD34+ hematopoietic stem cells (HSCs) and bearing human ccRCC skrc-59 cells under the kidney capsule. G36-PDL1 CAR-T cells, haploidentical to the tumor cells, had a potent antitumor effect compared to those without immune-restoring effect. Analysis of the TME revealed that G36-PDL1 CAR-T cells restored active antitumor immunity by promoting tumor-killing cytotoxicity, reducing immunosuppressive cell components such as M2 macrophages and exhausted CD8+ T cells, and enhancing T follicular helper (Tfh)-B cell crosstalk.

3.
PLoS Comput Biol ; 19(8): e1011324, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624866

RESUMEN

BACKGROUND: The majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development of new statistical and computational methods in Bioconductor for such data will be facilitated by easy availability of landmark datasets using standard data classes. RESULTS: We collected, processed, and packaged publicly available landmark datasets from important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal package in Bioconductor's Cloud-based ExperimentHub. The result is single-command actualization of landmark datasets from seven single-cell multimodal data generation technologies, without need for further data processing or wrangling in order to analyze and develop methods within Bioconductor's ecosystem of hundreds of packages for single-cell and multimodal data. CONCLUSIONS: We provide two examples of integrative analyses that are greatly simplified by SingleCellMultiModal. The package will facilitate development of bioinformatic and statistical methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing phenotypic outputs including cell differentiation, activity, and disease.


Asunto(s)
Ecosistema , Proteómica , Diferenciación Celular , Biología Computacional , Epigenómica
4.
Nat Cancer ; 4(5): 754-773, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37237081

RESUMEN

Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies. These genes, some known, others not previously linked to MM, encode transcription factors, chromatin modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most of these genes are not among the top amplified, overexpressed or mutated in MM. Functional genomics approaches thus define new therapeutic targets in MM not readily identifiable by standard genomic, transcriptional or epigenetic profiling analyses.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Genómica , Genoma , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
5.
Sci Rep ; 13(1): 1197, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681709

RESUMEN

Effective dimension reduction is essential for single cell RNA-seq (scRNAseq) analysis. Principal component analysis (PCA) is widely used, but requires continuous, normally-distributed data; therefore, it is often coupled with log-transformation in scRNAseq applications, which can distort the data and obscure meaningful variation. We describe correspondence analysis (CA), a count-based alternative to PCA. CA is based on decomposition of a chi-squared residual matrix, avoiding distortive log-transformation. To address overdispersion and high sparsity in scRNAseq data, we propose five adaptations of CA, which are fast, scalable, and outperform standard CA and glmPCA, to compute cell embeddings with more performant or comparable clustering accuracy in 8 out of 9 datasets. In particular, we find that CA with Freeman-Tukey residuals performs especially well across diverse datasets. Other advantages of the CA framework include visualization of associations between genes and cell populations in a "CA biplot," and extension to multi-table analysis; we introduce corralm for integrative multi-table dimension reduction of scRNAseq data. We implement CA for scRNAseq data in corral, an R/Bioconductor package which interfaces directly with single cell classes in Bioconductor. Switching from PCA to CA is achieved through a simple pipeline substitution and improves dimension reduction of scRNAseq datasets.


Asunto(s)
Análisis de la Célula Individual , Análisis de Expresión Génica de una Sola Célula , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Análisis de Componente Principal , Análisis por Conglomerados
6.
Mol Ther Oncolytics ; 24: 385-399, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35118195

RESUMEN

Improving CAR-T cell therapy for solid tumors requires a better understanding of CAR design and cellular composition. Here, we compared second-generation (BBζ and 28ζ) with third-generation (28BBζ) carbonic anhydrase IX (CAIX)-targeted CAR constructs and investigated the antitumor effect of CAR-T cells with different CD4/CD8 proportions in vitro and in vivo. The results demonstrated that BBζ exhibited superior efficacy compared with 28ζ and 28BBζ CAR-T cells in a clear-cell renal cell carcinoma (ccRCC) skrc-59 cell bearing NSG-SGM3 mouse model. The mice treated with a single dose of BBζ CD4/CD8 mixture (CAR4/8) showed complete tumor remission and remained tumor-free 72 days after CAR-T cells infusion. In the other CAR-T and control groups, tumor-infiltrating T cells were recovered and profiled. We found that BBζ CAR8 cells upregulated expression of major histocompatibility complex (MHC) class II and cytotoxicity-associated genes, while downregulating inhibitory immune checkpoint receptor genes and diminishing differentiation of regulatory T cells (Treg cells), leading to excellent therapeutic efficacy in vivo. Increased memory phenotype, elevated tumor infiltration, and decreased exhaustion genes were observed in the CD4/8 untransduced T (UNT) cells compared with CD8 alone, indicating that CD4/8 would be the favored cellular composition for CAR-T cell therapy with long-term persistence. In summary, these findings support that BBζ CAR4/8 cells are a highly potent, clinically translatable cell therapy for ccRCC.

9.
Nat Genet ; 53(8): 1196-1206, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34253920

RESUMEN

To systematically define molecular features in human tumor cells that determine their degree of sensitivity to human allogeneic natural killer (NK) cells, we quantified the NK cell responsiveness of hundreds of molecularly annotated 'DNA-barcoded' solid tumor cell lines in multiplexed format and applied genome-scale CRISPR-based gene-editing screens in several solid tumor cell lines, to functionally interrogate which genes in tumor cells regulate the response to NK cells. In these orthogonal studies, NK cell-sensitive tumor cells tend to exhibit 'mesenchymal-like' transcriptional programs; high transcriptional signature for chromatin remodeling complexes; high levels of B7-H6 (NCR3LG1); and low levels of HLA-E/antigen presentation genes. Importantly, transcriptional signatures of NK cell-sensitive tumor cells correlate with immune checkpoint inhibitor (ICI) resistance in clinical samples. This study provides a comprehensive map of mechanisms regulating tumor cell responses to NK cells, with implications for future biomarker-driven applications of NK cell immunotherapies.


Asunto(s)
Citotoxicidad Inmunológica/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/farmacología , Células Asesinas Naturales/fisiología , Células Alogénicas/fisiología , Animales , Antígenos B7/genética , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/fisiología , Pruebas Inmunológicas de Citotoxicidad/métodos , Citotoxicidad Inmunológica/fisiología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Genoma Humano , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Ratones Endogámicos NOD , Ensayos Antitumor por Modelo de Xenoinjerto , Antígenos HLA-E
10.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34272262

RESUMEN

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Asunto(s)
COVID-19/mortalidad , Neoplasias/epidemiología , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios de Cohortes , Comorbilidad , Bases de Datos Factuales , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Terapia de Inmunosupresión/efectos adversos , Gripe Humana/epidemiología , Masculino , Persona de Mediana Edad , Pandemias , Prevalencia , Factores de Riesgo , SARS-CoV-2 , España/epidemiología , Estados Unidos/epidemiología , Adulto Joven
11.
Cancer Cell ; 39(2): 240-256.e11, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33417832

RESUMEN

Treatment-persistent residual tumors impede curative cancer therapy. To understand this cancer cell state we generated models of treatment persistence that simulate the residual tumors. We observe that treatment-persistent tumor cells in organoids, xenografts, and cancer patients adopt a distinct and reversible transcriptional program resembling that of embryonic diapause, a dormant stage of suspended development triggered by stress and associated with suppressed Myc activity and overall biosynthesis. In cancer cells, depleting Myc or inhibiting Brd4, a Myc transcriptional co-activator, attenuates drug cytotoxicity through a dormant diapause-like adaptation with reduced apoptotic priming. Conversely, inducible Myc upregulation enhances acute chemotherapeutic activity. Maintaining residual cells in dormancy after chemotherapy by inhibiting Myc activity or interfering with the diapause-like adaptation by inhibiting cyclin-dependent kinase 9 represent potential therapeutic strategies against chemotherapy-persistent tumor cells. Our study demonstrates that cancer co-opts a mechanism similar to diapause with adaptive inactivation of Myc to persist during treatment.


Asunto(s)
Adaptación Fisiológica/genética , Embrión de Mamíferos/fisiología , Proteínas Proto-Oncogénicas c-myc/genética , Adaptación Fisiológica/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Apoptosis/genética , Línea Celular , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/genética , Diapausa/efectos de los fármacos , Diapausa/genética , Embrión de Mamíferos/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Factores de Transcripción/genética , Transcripción Genética/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
12.
Cell Rep ; 34(1): 108532, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406420

RESUMEN

Heterobifunctional proteolysis-targeting chimeric compounds leverage the activity of E3 ligases to induce degradation of target oncoproteins and exhibit potent preclinical antitumor activity. To dissect the mechanisms regulating tumor cell sensitivity to different classes of pharmacological "degraders" of oncoproteins, we performed genome-scale CRISPR-Cas9-based gene editing studies. We observed that myeloma cell resistance to degraders of different targets (BET bromodomain proteins, CDK9) and operating through CRBN (degronimids) or VHL is primarily mediated by prevention of, rather than adaptation to, breakdown of the target oncoprotein; and this involves loss of function of the cognate E3 ligase or interactors/regulators of the respective cullin-RING ligase (CRL) complex. The substantial gene-level differences for resistance mechanisms to CRBN- versus VHL-based degraders explains mechanistically the lack of cross-resistance with sequential administration of these two degrader classes. Development of degraders leveraging more diverse E3 ligases/CRLs may facilitate sequential/alternating versus combined uses of these agents toward potentially delaying or preventing resistance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/farmacología , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/metabolismo , Resistencia a Antineoplásicos , Edición Génica , Regulación Neoplásica de la Expresión Génica , Genes Sobrepuestos , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Ratones , Mieloma Múltiple/tratamiento farmacológico , Proteínas Oncogénicas/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Proteolisis , Células Tumorales Cultivadas
13.
Cancer Res ; 81(2): 371-383, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32859606

RESUMEN

Although hormonal therapy (HT) inhibits the growth of hormone receptor-positive (HR+) breast and prostate cancers, HT resistance frequently develops within the complex metastatic microenvironment of the host organ (often the bone), a setting poorly recapitulated in 2D culture systems. To address this limitation, we cultured HR+ breast cancer and prostate cancer spheroids and patient-derived organoids in 3D extracellular matrices (ECM) alone or together with bone marrow stromal cells (BMSC). In 3D monocultures, antiestrogens and antiandrogens induced anoikis by abrogating anchorage-independent growth of HR+ cancer cells but exhibited only modest effects against tumor cells residing in the ECM niche. In contrast, BMSC induced hormone-independent growth of breast cancer and prostate cancer spheroids and restored lumen filling in the presence of HR-targeting agents. Molecular and functional characterization of BMSC-induced hormone independence and HT resistance in anchorage-independent cells revealed distinct context-dependent mechanisms. Cocultures of ZR75-1 and LNCaP with BMSCs exhibited paracrine IL6-induced HT resistance via attenuation of HR protein expression, which was reversed by inhibition of IL6 or JAK signaling. Paracrine IL6/JAK/STAT3-mediated HT resistance was confirmed in patient-derived organoids cocultured with BMSCs. Distinctly, MCF7 and T47D spheroids retained ER protein expression in cocultures but acquired redundant compensatory signals enabling anchorage independence via ERK and PI3K bypass cascades activated in a non-IL6-dependent manner. Collectively, these data characterize the pleiotropic hormone-independent mechanisms underlying acquisition and restoration of anchorage-independent growth in HR+ tumors. Combined analysis of tumor and microenvironmental biomarkers in metastatic biopsies of HT-resistant patients can help refine treatment approaches. SIGNIFICANCE: This study uncovers a previously underappreciated dependency of tumor cells on HR signaling for anchorage-independent growth and highlights how the metastatic microenvironment restores this malignant property of cancer cells during hormone therapy.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores de Estrógenos/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Nat Commun ; 11(1): 5009, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024121

RESUMEN

Comorbid conditions appear to be common among individuals hospitalised with coronavirus disease 2019 (COVID-19) but estimates of prevalence vary and little is known about the prior medication use of patients. Here, we describe the characteristics of adults hospitalised with COVID-19 and compare them with influenza patients. We include 34,128 (US: 8362, South Korea: 7341, Spain: 18,425) COVID-19 patients, summarising between 4811 and 11,643 unique aggregate characteristics. COVID-19 patients have been majority male in the US and Spain, but predominantly female in South Korea. Age profiles vary across data sources. Compared to 84,585 individuals hospitalised with influenza in 2014-19, COVID-19 patients have more typically been male, younger, and with fewer comorbidities and lower medication use. While protecting groups vulnerable to influenza is likely a useful starting point in the response to COVID-19, strategies will likely need to be broadened to reflect the particular characteristics of individuals being hospitalised with COVID-19.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Hospitalización , Gripe Humana/epidemiología , Pandemias , Neumonía Viral/epidemiología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19 , Estudios de Cohortes , Comorbilidad , Infecciones por Coronavirus/tratamiento farmacológico , Femenino , Humanos , Gripe Humana/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Neumonía Viral/tratamiento farmacológico , Prevalencia , República de Corea/epidemiología , Factores Sexuales , España/epidemiología , Estados Unidos/epidemiología , Adulto Joven
15.
Lancet Rheumatol ; 2(11): e698-e711, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32864627

RESUMEN

BACKGROUND: Hydroxychloroquine, a drug commonly used in the treatment of rheumatoid arthritis, has received much negative publicity for adverse events associated with its authorisation for emergency use to treat patients with COVID-19 pneumonia. We studied the safety of hydroxychloroquine, alone and in combination with azithromycin, to determine the risk associated with its use in routine care in patients with rheumatoid arthritis. METHODS: In this multinational, retrospective study, new user cohort studies in patients with rheumatoid arthritis aged 18 years or older and initiating hydroxychloroquine were compared with those initiating sulfasalazine and followed up over 30 days, with 16 severe adverse events studied. Self-controlled case series were done to further establish safety in wider populations, and included all users of hydroxychloroquine regardless of rheumatoid arthritis status or indication. Separately, severe adverse events associated with hydroxychloroquine plus azithromycin (compared with hydroxychloroquine plus amoxicillin) were studied. Data comprised 14 sources of claims data or electronic medical records from Germany, Japan, the Netherlands, Spain, the UK, and the USA. Propensity score stratification and calibration using negative control outcomes were used to address confounding. Cox models were fitted to estimate calibrated hazard ratios (HRs) according to drug use. Estimates were pooled where the I 2 value was less than 0·4. FINDINGS: The study included 956 374 users of hydroxychloroquine, 310 350 users of sulfasalazine, 323 122 users of hydroxychloroquine plus azithromycin, and 351 956 users of hydroxychloroquine plus amoxicillin. No excess risk of severe adverse events was identified when 30-day hydroxychloroquine and sulfasalazine use were compared. Self-controlled case series confirmed these findings. However, long-term use of hydroxychloroquine appeared to be associated with increased cardiovascular mortality (calibrated HR 1·65 [95% CI 1·12-2·44]). Addition of azithromycin appeared to be associated with an increased risk of 30-day cardiovascular mortality (calibrated HR 2·19 [95% CI 1·22-3·95]), chest pain or angina (1·15 [1·05-1·26]), and heart failure (1·22 [1·02-1·45]). INTERPRETATION: Hydroxychloroquine treatment appears to have no increased risk in the short term among patients with rheumatoid arthritis, but in the long term it appears to be associated with excess cardiovascular mortality. The addition of azithromycin increases the risk of heart failure and cardiovascular mortality even in the short term. We call for careful consideration of the benefit-risk trade-off when counselling those on hydroxychloroquine treatment. FUNDING: National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, NIHR Senior Research Fellowship programme, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research and Development, IQVIA, Korea Health Industry Development Institute through the Ministry of Health and Welfare Republic of Korea, Versus Arthritis, UK Medical Research Council Doctoral Training Partnership, Foundation Alfonso Martin Escudero, Innovation Fund Denmark, Novo Nordisk Foundation, Singapore Ministry of Health's National Medical Research Council Open Fund Large Collaborative Grant, VINCI, Innovative Medicines Initiative 2 Joint Undertaking, EU's Horizon 2020 research and innovation programme, and European Federation of Pharmaceutical Industries and Associations.

16.
Front Oncol ; 10: 973, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32656082

RESUMEN

Integrative, single-cell analyses may provide unprecedented insights into cellular and spatial diversity of the tumor microenvironment. The sparsity, noise, and high dimensionality of these data present unique challenges. Whilst approaches for integrating single-cell data are emerging and are far from being standardized, most data integration, cell clustering, cell trajectory, and analysis pipelines employ a dimension reduction step, frequently principal component analysis (PCA), a matrix factorization method that is relatively fast, and can easily scale to large datasets when used with sparse-matrix representations. In this review, we provide a guide to PCA and related methods. We describe the relationship between PCA and singular value decomposition, the difference between PCA of a correlation and covariance matrix, the impact of scaling, log-transforming, and standardization, and how to recognize a horseshoe or arch effect in a PCA. We describe canonical correlation analysis (CCA), a popular matrix factorization approach for the integration of single-cell data from different platforms or studies. We discuss alternatives to CCA and why additional preprocessing or weighting datasets within the joint decomposition should be considered.

17.
medRxiv ; 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32511443

RESUMEN

Background In this study we phenotyped individuals hospitalised with coronavirus disease 2019 (COVID-19) in depth, summarising entire medical histories, including medications, as captured in routinely collected data drawn from databases across three continents. We then compared individuals hospitalised with COVID-19 to those previously hospitalised with influenza. Methods We report demographics, previously recorded conditions and medication use of patients hospitalised with COVID-19 in the US (Columbia University Irving Medical Center [CUIMC], Premier Healthcare Database [PHD], UCHealth System Health Data Compass Database [UC HDC], and the Department of Veterans Affairs [VA OMOP]), in South Korea (Health Insurance Review & Assessment [HIRA]), and Spain (The Information System for Research in Primary Care [SIDIAP] and HM Hospitales [HM]). These patients were then compared with patients hospitalised with influenza in 2014-19. Results 34,128 (US: 8,362, South Korea: 7,341, Spain: 18,425) individuals hospitalised with COVID-19 were included. Between 4,811 (HM) and 11,643 (CUIMC) unique aggregate characteristics were extracted per patient, with all summarised in an accompanying interactive website (http://evidence.ohdsi.org/Covid19CharacterizationHospitalization/). Patients were majority male in the US (CUIMC: 52%, PHD: 52%, UC HDC: 54%, VA OMOP: 94%,) and Spain (SIDIAP: 54%, HM: 60%), but were predominantly female in South Korea (HIRA: 60%). Age profiles varied across data sources. Prevalence of asthma ranged from 4% to 15%, diabetes from 13% to 43%, and hypertensive disorder from 24% to 70% across data sources. Between 14% and 33% were taking drugs acting on the renin-angiotensin system in the 30 days prior to hospitalisation. Compared to 81,596 individuals hospitalised with influenza in 2014-19, patients admitted with COVID-19 were more typically male, younger, and healthier, with fewer comorbidities and lower medication use. Conclusions We provide a detailed characterisation of patients hospitalised with COVID-19. Protecting groups known to be vulnerable to influenza is a useful starting point to minimize the number of hospital admissions needed for COVID-19. However, such strategies will also likely need to be broadened so as to reflect the particular characteristics of individuals hospitalised with COVID-19.

18.
Cancer Epidemiol Biomarkers Prev ; 29(2): 509-519, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31871106

RESUMEN

BACKGROUND: Recent efforts to improve outcomes for high-grade serous ovarian cancer, a leading cause of cancer death in women, have focused on identifying molecular subtypes and prognostic gene signatures, but existing subtypes have poor cross-study robustness. We tested the contribution of cell admixture in published ovarian cancer molecular subtypes and prognostic gene signatures. METHODS: Gene signatures of tumor and stroma were developed using paired microdissected tissue from two independent studies. Stromal genes were investigated in two molecular subtype classifications and 61 published gene signatures. Prognostic performance of gene signatures of stromal admixture was evaluated in 2,527 ovarian tumors (16 studies). Computational simulations of increasing stromal cell proportion were performed by mixing gene-expression profiles of paired microdissected ovarian tumor and stroma. RESULTS: Recently described ovarian cancer molecular subtypes are strongly associated with the cell admixture. Tumors were classified as different molecular subtypes in simulations where the percentage of stromal cells increased. Stromal gene expression in bulk tumors was associated with overall survival (hazard ratio, 1.17; 95% confidence interval, 1.11-1.23), and in one data set, increased stroma was associated with anatomic sampling location. Five published prognostic gene signatures were no longer prognostic in a multivariate model that adjusted for stromal content. CONCLUSIONS: Cell admixture affects the interpretation and reproduction of ovarian cancer molecular subtypes and gene signatures derived from bulk tissue. Elucidating the role of stroma in the tumor microenvironment and in prognosis is important. IMPACT: Single-cell analyses may be required to refine the molecular subtypes of high-grade serous ovarian cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Cistadenocarcinoma Seroso/mortalidad , Neoplasias Ováricas/mortalidad , Ovario/patología , Células del Estroma/patología , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Humanos , Microdisección , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ovario/citología , Pronóstico , Análisis de Supervivencia , Transcriptoma , Microambiente Tumoral/genética
20.
Mol Cell Proteomics ; 18(8 suppl 1): S153-S168, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243065

RESUMEN

Gene-set analysis (GSA) summarizes individual molecular measurements to more interpretable pathways or gene-sets and has become an indispensable step in the interpretation of large-scale omics data. However, GSA methods are limited to the analysis of single omics data. Here, we introduce a new computation method termed multi-omics gene-set analysis (MOGSA), a multivariate single sample gene-set analysis method that integrates multiple experimental and molecular data types measured over the same set of samples. The method learns a low dimensional representation of most variant correlated features (genes, proteins, etc.) across multiple omics data sets, transforms the features onto the same scale and calculates an integrated gene-set score from the most informative features in each data type. MOGSA does not require filtering data to the intersection of features (gene IDs), therefore, all molecular features, including those that lack annotation may be included in the analysis. Using simulated data, we demonstrate that integrating multiple diverse sources of molecular data increases the power to discover subtle changes in gene-sets and may reduce the impact of unreliable information in any single data type. Using real experimental data, we demonstrate three use-cases of MOGSA. First, we show how to remove a source of noise (technical or biological) in integrative MOGSA of NCI60 transcriptome and proteome data. Second, we apply MOGSA to discover similarities and differences in mRNA, protein and phosphorylation profiles of a small study of stem cell lines and assess the influence of each data type or feature on the total gene-set score. Finally, we apply MOGSA to cluster analysis and show that three molecular subtypes are robustly discovered when copy number variation and mRNA data of 308 bladder cancers from The Cancer Genome Atlas are integrated using MOGSA. MOGSA is available in the Bioconductor R package "mogsa."


Asunto(s)
Genómica/métodos , Análisis por Conglomerados , Variaciones en el Número de Copia de ADN , Humanos , Espectrometría de Masas , ARN Mensajero , RNA-Seq , Neoplasias de la Vejiga Urinaria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...